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a b s t r a c t

In this work, a bidimensional differential equation system obtained by modifying the
well-known predator–prey Rosenzweig–MacArthurmodel is analyzed by considering prey
growth influenced by the Allee effect.

One of the main consequences of this modification is a separatrix curve that appears
in the phase plane, dividing the behavior of the trajectories. The results show that the
equilibrium in the origin is an attractor for any set of parameters. The unique positive
equilibrium, when it exists, can be either an attractor or a repeller surrounded by a limit
cycle, whose uniqueness is established by calculating the Lyapunov quantities. Therefore,
both populations could either reach deterministic extinction or long-term deterministic
coexistence.

The existence of a heteroclinic curve is also proved. When this curve is broken by
changing parameter values, then the origin turns out to be an attractor for all orbits in the
phase plane. This implies that there are plausible conditions where both populations can
go to extinction. We conclude that strong and weak Allee effects on prey population exert
similar influences on the predator–prey model, thereby increasing the risk of ecological
extinction.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, we analyze a Gause-type predator–prey model derived from the reasonably realistic and well-known
Rosenzweig–MacArthur model [1,2], where the Allee effect on the prey growth equation [3–5], has been incorporated. Our
main goals involve describing the system dynamics and establishing the number of limit cycles that the system can exhibit.

It is well known that a classical Gause-type predator–prey model [6,7] is represented by the second-order differential
equation system:

X :


dx
dt

= x g(x)− h(x) y

dy
dt

= (ψ(x)− c) y,
(1)
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where x = x(t) and y = y(t) indicate the prey and predator population sizes at time t > 0; functions g(x), h(x) and
ψ(x) have appropriate properties [7,8], representing the prey growth rate, functional response or the trophic function of
the predator [9] and numerical response, respectively; function f (x) = x g(x) is the prey population growth rate in the
absence of predators.

The problem of determining the conditions that guarantee the uniqueness of a limit cycle [7], the global stability of the
unique positive equilibrium in predator–prey systems [10], or the nonexistence of limit cycles [8], has been extensively
studied over the last few decades starting with the work by Cheng [11].

The existence of limit cycles in predator–prey systems may be used to explain many real-world oscillatory phenomena.
For a wide class of predator–prey models, those satisfying the so-called Kolmogorov conditions, May [12] claimed that a
unique stable limit cycle must occur. However, it is possible to construct a predator–prey model satisfying the Kolmogorov
conditions for which many periodic solutions inside an annular region bounded by two limit cycles exist [13].

However, it is not an easy task to study the quantity of limit cycles that can be originated throughout the bifurcation
of a center-focus [14]. This problem is related to the well-known Hilbert 16th Problem for polynomial systems [15], and it
is a question that has remained unanswered for the predation model, particularly for the Gause-type model described by
system (1) [16].

On the other hand, Allee effect is an ecological phenomenon caused by any mechanism leading to a positive relationship
between individual fitness and the abundance of conspecifics [5]. Distinct ecological mechanisms producing Allee effects
are known, such as: reduction in matting success, suppressed social thermoregulation, reduced anti-predator defense, and
reduced feeding efficiency [17]. Nevertheless, other causes may also generate these phenomena (see Table 1 in [18] or
Table 2.1 in [19]).

Recent ecological research suggests the possibility that two ormore Allee effects can be generated bymechanisms acting
simultaneously on a single population (see Table 2 in [18]). The combined influence of some of these phenomena is known
asmultiple Allee effect [20,18,19].

The Allee effect is an important and interesting phenomenon for both ecologists andmathematicians. From an ecological
point of view, the Allee effect increases the risk of population extinction, as supported by recent developments in ecology
and conservation [3,19].

A combination of fluctuating population size and Allee effect has been invoked to explain the extinction of some animal
species [5]. Although this phenomenon has attracted attention among scientists within different subfields of ecology, such
as metapopulation dynamics, biological invasions, [19] or epidemiology, only some studies have analyzed the community
consequences of Allee effect using bidimensional differential equation systems [21,22].

Careful mathematical analyses of simple models can reveal much about the dynamics of populations subjected to the
Allee effect [5,23], where a new equilibrium point changing the structural stability of the system often appears [24,25].

The Allee effect can be divided into two main types, depending on how strong the per capita growth rate is depleted at
low population sizes. These two types are called strong Allee effect [26–28] or critical depensation [29–31], and weak Allee
effect [17,27] or noncritical depensation [29–31]. The strong Allee effect implies the existence of a threshold population level
m > 0 [23,32], below which the population becomes extinct. This requires the population growth dx/dt to be negative for
x < m, and positive if x > m, where x = x(t) indicates the population size.

Many algebraic forms have been used to describe the Allee effect [33,22,4,26], although most of them are topologically
equivalent [34]. However, some of these forms may produce a change in the quantity of limit cycles surrounding a positive
equilibrium point in predator–prey models [24].

Oscillatory behavior in predator–prey (consumer–resource) interaction has been an important topic in Population
Dynamics [27], since the persistence of ecological populations and communities over time is intimately related to their
ability to maintain abundance distant from low numbers. In nature, fluctuating populations are prone to stochastic
extinction when they go through phases of low abundance. Therefore, it is of great concern from a managing perspective,
albeit technically challenging, to establish conditions under which populations are predicted to exhibit oscillatory behavior,
especially if the Allee effect influences the prey population.

Our analyses show the consequences of both strong and weak Allee effects on the dynamics of the Rosenzweig–
MacArthur predator–prey model are similar, when the simplest mathematical form for this effect is incorporated to the
model. Remarkably, a heteroclinic curve appears,which increases the probability of deterministic extinction for both species.
In addition, we establish the existence of a unique limit cycle surrounding the positive equilibrium point and conditions
under which both populations go to extinction.

This paper is organized as follows: In the next section, we present themodel, and amodel topologically equivalent to the
Gause-type predator–prey model is obtained. Section 3 deals with the main properties of the new model whose proofs are
given in the Appendix; in Section 4 some simulation are shown and a brief discussion is formulated in Section 5.

2. The model

Using the most simple and common model in continuous time for representing the growth of the prey population
influenced by the Allee effect and the hyperbolic functional response, the Gause-type predator–prey model is described
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by the following differential equation system:

Xµ :


dx
dt

=


r

1 −

x
K


(x − m) −

q y
a + x


x

dy
dt

=


p x

a + x
− c


y

(2)

with µ = (r, K , q, a, p, c,m) ∈ R6
+

× R, and for ecological reasons a,m < K .
The equation representing the growth of prey in the absence of predators is

dx
dt

= r

1 −

x
K


(x − m)x,

where m > 0 is the minimum viable prey population, i.e., the threshold below which the population goes to extinction yet
in absence of predators (strong Allee effect). If m ≤ 0, equation represents the weak Allee effect. When m = 0, implies
the collapse of the singularities m and 0. If m < 0, then the equation represents a compensatory growth function [29,31];
therefore, system (2) have a similar dynamics than the Rosenzweig–MacArthur model, and it will not be analyzed in this
work; we only consider the special case of weak Allee effect whenm = 0.

In system (2), the parameter r represents the intrinsic growth rate of the prey, meanwhile K is the prey carrying capacity.
Function h(x) =

q x
x+a , is the hyperbolic functional response, a particular case of Holling type II functional response [1,2]; in

this function q is the maximum consumption rate of predators and a is the half saturation parameter. Finally, the parameter
p is the efficiency of converting consumed prey into newpredators, and c is the natural per capitamortality rate of predators.

System (2) is of Kolmogorov type [6,35]; so, the axes are invariant sets and it is defined in the first quadrant, i.e., in the
setΩ = {(x, y) ∈ R2/ x ≥ 0, y ≥ 0}.

The equilibrium points of system (2) or singularities of the vector field Xµ are O = (0, 0), PK = (K , 0), Pm = (m, 0) and
Pe = (xe, ye), where xe =

ac
p−c and ye =

r
q (1 −

xe
K )(xe − m)(a + xe). The equilibrium Pm is a direct consequence of the Allee

effect on prey.
On the other hand, equilibrium Pe arises due to predation and its existence is guaranteed in the interior of the first

quadrant when p > c. Therefore, species are able to coexist if the conversion efficiency of predators is higher than their
natural mortality, provided that the prey population level is maintained over the thresholdm.

In order to simplify the calculus, we follow the methodology used in [36,37], changing the variables and rescaling the
time through the function ϕ : Ω × R −→ Ω × R, such that

ϕ(u, v, τ ) =


Ku,

K 2r
q
v,

a
K + u
Kr

τ


= (x, y, t)

thus, detDϕ(u, v, τ ) =
K(a+Ku)

q > 0. Then, ϕ is a diffeomorphism [14], for which the vector field Xµ in the new coordinate
system is topologically equivalent to the vector field Yη = ϕ ◦Xµ, which takes the form Yν = P(u, v) ∂

∂u +Q (u, v) ∂
∂v

[38].
The associated fourth-order polynomial system is given by

Yη :


du
dτ

= ((1 − u)(u − M)(A + u)− v)u

dv
dτ

= S (u − E)v
(3)

where η = (A, E, S,M) ∈ R3
+

× [0, 1[, with A =
a
K , E =

ac
K(p−c) , S =

p−c
rK and M =

m
K . Moreover, p − c > 0 and 0 < A < 1;

M can be zero on a particular case of weak Allee effect.
Since ϕ is a diffeomorphism, the vector field (3) has the same qualitative behavior than the original system (2) [38].

System (3) is defined on the set

Ω̂ = {(u, v) ∈ R2/ u ≥ 0, v ≥ 0}.

The equilibrium points of system (3) are: O = (0, 0), QM = (M, 0) and Q1 = (1, 0), which always lie in Ω̂ . The existence
of Qe = (E, ve) in Ω̂ , where ve = (1 − E)(E − M)(A + E) > 0, is guaranteed if 0 < M < E < 1.

The corresponding Jacobian matrix is

D Yη(u, v) =


D Yη(u, v)11 − u

Sv S(u − E)


with

D Yη(u, v)11 = 3u2(M + 1 − A)+ 2u(AM + A − M)− 4u3
− AM − v.
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a b

Fig. 1. The trajectories with initial conditions in the dark zones have the point (0, 0) as their ω-ĺımit , for E > 1 (a) or 0 < E < M (b).

3. Main results

The following results were obtained for system (3); the proofs are given in the Appendix.

Lemma 1. (a) The set Γ̄ = {(u, v) ∈ Ω̂/ 0 ≤ u ≤ 1, v ≥ 0} is an invariant region.
(b) The solutions are bounded.

Lemma 2. Nature of equilibrium points over the axes

(2.1) The equilibrium point Q1 = (1, 0) is
(2.1.1) a hyperbolic attractor, if and only if E > 1.
(2.1.2) a hyperbolic saddle point, if and only if 0 < M < E < 1.
(2.1.3) a non-hyperbolic attractor, if and only if E = 1.

(2.2) The point QM = (M, 0) is
(2.2.1) a hyperbolic saddle point, if and only if M < E.
(2.2.2) a hyperbolic repeller, if and only if E < M.
(2.2.3) a non-hyperbolic repeller, if and only if M = E.

(2.3) The equilibrium point O = (0, 0) is a hyperbolic attractor for any set of parameter values.

The stable and unstable manifolds of QM and Q1 are denoted byW s(M, 0) andW u(1, 0) respectively. Then we note that:

(a) If E > 1, then there are three equilibrium points O, Q1 and QM in the invariant region Γ̄ . The equilibrium points O and
Q1 are local attractors, while QM is a saddle point. Moreover, there exists a separatrix curve for the trajectories in Γ̄
determined by W s(M, 0), the stable manifold of the saddle point QM , which divides the behaviors of the trajectories
(Fig. 2(a)).

(b) If E = 1, then Qe coincides with Q1 and a non-hyperbolic local attractor is obtained; the point O is a local attractor and
QM a saddle point. The behavior of the trajectories in Γ̄ is determined byW s(M, 0).

(c) If E < M then there are three equilibrium points in the invariant region: Q1 is a saddle point, QM is a repeller, and O is a
global attractor for the trajectories in Γ̄ (Fig. 2(b)).

(d) If E = M then Qe collapses with QM , being a non-hyperbolic repeller, and O is a global attractor.

Then, the stablemanifoldW s(M, 0) divides Γ̄ into two subregions; one of them denoted byΛ is limited byW s(M, 0), the
straight line u = 1, and the x-axis. When E > 1, Qe lies outside the first quadrant and the trajectories with initial conditions
inside Λ have the point Q1 as ω-ĺımit (Fig. 1(a)), whereas the orbits starting out of Λ (above the manifold W s(M, 0)) have
the point (0, 0) as their ω-ĺımit (Fig. 1(b)).

In the following, we assume that 0 < M < E < 1, and hence the existence of a unique equilibriumpointQe in the interior
of the first quadrant is guaranteed, more precisely in the subregion Γ̂ = {(u, v) ∈ Γ̄ /M < u < 1, v ≥ 0}. Moreover, the
equilibrium point O is a local attractor and the singularities Q1 and QM are saddle points.

Lemma 3. Let W s(M, 0) and W u(1, 0) be the stable and unstable manifolds of QM and Q1 respectively; then, a subset of
parameter values for which W s(M, 0) = W u(1, 0) exists, giving rise to a heteroclinic joining the saddle points Q1 and QM .

For 0 < M < E < 1 we have that detD Yν(E, ve) > 0, then the nature of the equilibrium point Qe is dependent on the
sign of the trace of the Jacobian matrix evaluated in this point. Whether Qe is a node or a focus depends on the quantity:

P = (trDYν(E, ve))2 − 4 detD Yν(E, ve)
= (−3E2

− 2EA + 2E + A)2 − 4S(1 − E)(A + E).
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Fig. 2. Different positions of the stable manifoldW s of saddle point (M, 0) and the unstable manifoldW u of saddle point (1, 0), when 0 < M < E < 1.

Theorem 4. Let us assume that (u∗, vs) ∈ W s(M, 0) and (u∗, vu) ∈ W u(1, 0), where vs and vu are functions of the parameters
A, E, S and M. Let us further assume that vs ≥ vu.

(a) If A > −3E2+2EM+2E−M
2E−M−1 , then the trace is negative and the equilibrium Qe is a local attractor.

If S > (−3E2−2EA+2E+A)2

4(2)(A+E) , then Qe is an attracting focus, and

if S < (−3E2−2EA+2E+A)2

4(2)(A+E) , then Qe is an attracting node.

(b) If A < −3E2+2EM+2E−M
2E−M−1 , then the trace is positive and the equilibrium Qe is a repeller.

(b1) If S > (−3E2−2EA+2E+A)2

4(2)(A+E) , then Qe is an unstable focus surrounded by a stable limit cycle.

(b2) If S < (−3E2−2EA+2E+A)2

4(2)(A+E) , then Qe is an unstable node and the limit cycle disappears. In this last case, the singularity (0, 0) is
globally asymptotically stable.

(c) If A =
−3E2+2EM+2E−M

2E−M−1 < 1, then trD Yν(E, ve) = 0 and the equilibrium point is a weak focus of order one [14].

Note that for system (3) there is a unique stable limit cycle and there are not unstable limit cycles in the interior of the
first quadrant, which is in disagreement with previous results [22].

Theorem 5. Let (u∗, vs) ∈ W s and (u∗, vu) ∈ W u, where vs and vu are functions of the parameters A, E, S and M. Assuming
that vs < vu and M < E ≪ 1, then the equilibrium point Qe is a repeller node and the equilibrium point (0, 0) is a global
attractor. Then, there exists a new heteroclinic curve linking the points Qe and (0, 0).

3.1. A particular case of weak Allee effect

Consideringm = 0 in the model (2), the following system is obtained:

Yη :


du
dτ

= ((1 − u)(A + u)u − v)u

dv
dτ

= S (u − E)v
(4)

whose equilibrium points are O = (0, 0), Q1 = (1, 0), and Qe = (E, (1 − E)(A + E)E). In this case, the equilibrium point
(m, 0) of system (2) coincides with (0, 0).

For the vector field Yη we have:

Theorem 6. 1. The origin is a saddle-node point; moreover, it is an attractor for any trajectory that lies above a separatrix curve
determined by a stable manifold W s(0, 0) originated in the non-hyperbolic equilibrium point (0.0).

2. For the equilibrium points Q1 and Qe, we have that:

(a) if E > 1, then Qe lies in the fourth quadrant and the singularity Q1 is a local attractor,
(b) if 0 < E < 1, then Qe belongs to the first quadrant and the singularity Q1 is a saddle point,
(c) if E = 1, then the singularity Qe collapses with Q1, being a saddle-node point.

In the following we suppose that 0 < E < 1 and let

P = (trD Yν(E, ve))2 − 4 detD Yν(E, ve)
= (−3E2

− 2EA + 2E + A)2 − 4S(1 − E)(A + E).
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Fig. 3. The bifurcation diagram for theweak Allee effect in the parameter space E, A, where (E, A) ∈]0, 1[×]0, 1[, with the constraints vs = s(A, E, S,M) =

vu = u(A, E, S,M) and trD Yη(E, ve) = 0.

Theorem 7. Let (u, vs) ∈ W s(0, 0) be, the stable manifold of O and (u, vu) ∈ W u(1, 0), the unstable manifold of Q1.

7.1 Assuming that vs > vu we obtain that:
(a) If A > 2E−3E2

2E−1 , the singularity Qe is a local attractor.

(a1) if S > 1
4
(3E2+2EA−2E−A)2

(1−E)(A+E) , the point Qe is an attracting focus, and

(a2) if S < 1
4
(3E2+2EA−2E−A)2

(1−E)(A+E) , the point Qe is an attracting node.

(b) If A < 2E−3E2
2E−1 , the singularity Qe is a repeller.

(b1) If S > (−3E2−2EA+2E+A)2

4(2)(A+E) , then Qe is an unstable focus surrounded by a stable limit cycle.

(b2) If S < (−3E2−2EA+2E+A)2

4(2)(A+E) , then Qe is an unstable node and the limit cycle disappears. In this last case the singularity
(0, 0) is globally asymptotically stable.

(c) If A =
2E−3E2
2E−1 and S > 1

4
(3E2+2EA−2E−A)2

(1−E)(A+E) , Qe is a weak focus of order one.
7.2 If vs < vu, then the point Qe is a repeller, the limit cycle disappears and the origin is globally asymptotically stable; then, an

heteroclinic curve is obtained, joining Qe with (0, 0).

The bifurcation diagram of system (4) for the special case of weak Allee effect withM = 0 is shown in Fig. 3.

3.2. Some simulations

In Fig. 4 we present a set of simulations in order to illustrate the dynamic consequences of the strong Allee effect in the
Rosenzweig–MacArthur model. We note that the point (0, 0) is a local attractor for all parameter values. The results are
similar to those obtained for the weak Allee effect, according to the bifurcation diagram shown in Fig. 4.

In Fig. 4a, the interior equilibrium (E, ve) acts as a local attractor, where predators and preys can coexist in stable
conditions, provided initial conditions below the separatrix curve.

In Fig. 4b the unique interior equilibrium is a repeller (an unstable focus)with a stable limit cycle around it,with predators
and prey exhibiting an oscillatory behavior.

In Fig. 4c the unique interior equilibrium is a repeller and the limit cycles have disappeared, which means the prey and
predator populations will ultimately go to extinction.

In Fig. 4d the equilibrium is located outside the invariant region, which means the predator population will ultimately
tend to extinction, provided initial conditions below the separatrix curve.

4. Discussion

In this work we analyzed a deterministic predator–prey model derived from the Rosenzweig–MacArthur model that
includes Allee effect in the prey population. It was verified that the Allee effect exerts a large influence on the long-term
community stability. Whenever the threshold density m is positive, the singularity (0, 0) is a locally asymptotically stable
equilibrium point of the system for any set of parameter values. Therefore, there is a set of initial conditions for which both
populations will disappear.

In our study system, the community extinction is driven by the existence of a separatrix curve,which is determined by the
stable manifold of the saddle equilibrium point (m, 0). In the case of the weak Allee effect, the non-hyperbolic equilibrium
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Fig. 4a. Coexistence or extinction of both species. For A = 0.01, S = 1, E = 0.75 and M = 0.005, the unique positive singularity (E, ve) and the
point (0, 0) are local attractors, (M, 0) and (1, 0) are saddle points. The stable manifold W s(M, 0) determines a separatrix curve dividing the behavior of
trajectories at the phase plane.

Fig. 4b. Periodicity or extinction of two species. For A = 0.01, S = 1, E = 0.55 and M = 0.005, the singularity (0, 0) is a local attractor; (E, ve) is a
repeller surrounded by a limit cycle; (1, 0) and (M, 0) are saddle points; the stable manifoldW s(M, 0) determines a separatrix curve dividing the behavior
of trajectories in the phase plane.

Fig. 4c. Extinction of two species. For A = 0.01, S = 1, E = 0.25 andM = 0.005; the singularity (0, 0) is a global attractor equilibrium point; (E, ve) is a
repeller, the limit cycle has disappeared; (1, 0) and (M, 0) are saddle points and the stable manifoldW s(M, 0) is below the unstable manifoldW u(1, 0).

(0, 0) generates the separatrix curve. Then, two trajectories starting at opposite sides of the separatrix will have different
ω-limits [39]. This implies, independent of the prey–predator ratio, the population trajectories starting above this separatrix
will approach the equilibriumpoint (0, 0) and thereforewill go extinct. Conversely, trajectories starting below the separatrix
will approach either a steady state or a periodic oscillation, avoiding deterministic extinction.

Even though the weak Allee effect does not generate a new equilibrium point, its effect on the dynamics is remarkably
similar to that found for the strong Allee effect, i.e., the deterministic extinction is predicted for a subset of parameters
values, specially for low x/y ratios. Moreover, the separatrix curve observed with the strong Allee effect is preserved when
(0, 0) and (M, 0) collapse and the origin is a non-hyperbolic equilibrium point.
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Fig. 4d. Extinction of predators or extinction of two species. For A = 0.01, S = 1, E = 1.2 and M = 0.005, the singularity (0, 0) and the point (1, 0) are
local attractors, (M, 0) is a saddle point. The singularity (E, ve) is outside the invariant region Γ̄ . The stable manifold W s(M, 0) is below the unstable
manifoldW u(1, 0).

There is an invariant subregion Λ̃, limited by the stable manifoldW s(m, 0), the straight line x = K and the x-axis, where
the dynamics is similar to that of the original Rosenzweig–MacArthur model.

A new interesting consequence of the Allee effect is the existence of a heteroclinic curve, for a set of parameter values,
formed by the intersection of the unstable and the stable manifolds of singularities (M, 0) and (1, 0), respectively. With
A < 1

2 , decreasing the value of parameter E (Fig. 2), the amplitude of the limit cycle increases, up to a limit where it coincides
with the heteroclinic, and then a further increase in E destroys the periodic oscillation. Consequently, the point (0, 0) is
globally asymptotically stable, being ω-limit for all trajectories of the system. This situation has dramatic consequences on
the fate of the ecological community, since both populations become extinct.

The model here analyzed does not satisfy the conditions for global stability of the unique positive equilibrium (xe, ye)
reported by Xiao and Zhang [8]. This disagreement rests on the existence of a separatrix curve in the phase plane of the
model studied here.

There are conditions of the parameter values for which the interior equilibrium point is unstable and surrounded by a
unique stable limit cycle. The uniqueness of the limit cycle was demonstrated by calculating the Lyapunov quantities [14],
a result that contradicts a proposition stated in [22]. Then, for a set of parameters values, both community extinction and
population oscillations can result from different initial conditions.

Roughly speaking, Allee effect – either weak or strong – generates a basin of attraction where population trajectories
inside it will invariably reach extinction. This result may seem intuitive as an extension of the case of single populations
exhibiting a strong Allee effect, but it is not so when the Allee effect is weak since no additional equilibria appear in the one-
dimensional case. The risk of extinction not only increases for those populations whose densities start within the extinction
basin, but also for trajectories living within the coexistence basin.

The existence of a limit cycle therein impose a double risk for the persistence of populations exposed to a stochastic
world. First, oscillating populations may reach low numbers at certain times, which can result in extinction after suffering a
moderate stochastic perturbation. Second, oscillating populations can approach the separatrix curve at certain times, which
can result in a jump into the extinction basin driven by a stochastic perturbation, namely passive noise [40].

Given the Allee effect is being increasingly identified in natural populations, and their dynamic consequences at the
population and community levels are of deep concern, further empirical studies are needed as is presented in [28] to test
theoretical predictions such as the ones revealed here.
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Appendix

Proof of Lemma 1. (a) Clearly, the u-axis and the v-axis are invariant sets, because the system is of Kolmogorov type. If
u = 1, we have that

Yη :


du
dτ

= −v

dv
dτ

= S (u − E)v.

Then the vector field Yη points to the inside of region Γ̄ , whatever the sign of dv
dτ .
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(b) In order to prove the boundedness of solutions, the Poincaré compactification [14] is used to study the behavior of point
(0,∞). Through the change of variables X =

u
v
and Y =

1
v
, we have that dX

dτ =
1
v2
(v du

dτ − u dv
dτ ) and

du
dτ = −

1
v2

dv
dτ . After

simplifications, a new system Z̆ is obtained where the nature of the point (0, 0) of Z̆ determines the nature of (0,∞).

Using the blowing up method [14,38], it is shown that (0, 0) is a non-hyperbolic saddle point and, as a consequence, the
point (0,∞) is a saddle point. �

Proof of Lemma 2. The Jacobian matrix [39] in QM , Q1 and O are

D Yη(M, 0) =


M(1 − M)(M + A) −M

0 S(M − E)


,

D Yη(1, 0) =


−(1 − M)(1 + A) −1

0 S(1 − E)


D Yη(0, 0) =


−AM 0
0 −SE


,

(a) Clearly, the eigenvalues of D Yη(0, 0) are both negative, then O is a local attractor (locally asymptotically stable), since

detD Yη(0, 0) = AMSE > 0 and trD Yη(0, 0) = −AM − SE < 0.

If E > 1, then Qe is in the fourth quadrant and

detD Yη(M, 0) = SM(1 − M)(M + A)(M − E) < 0;

thus, QM is a saddle point.
Since detD Yη (1, 0) = −S(1 + A)(1 − M)(1 − E) > 0 and
trD Yη(1, 0) = −(1 − M)(1 + A)+ S(1 − E) < 0;
then, Q1 is an attractor.
Therefore, the behavior of the trajectories of the system in Ω̄ , depend on their relative position with respect to the

separatrix curve, determined by W s(M, 0) the stable manifold of QM . When the trajectories are above W s(M, 0), their
ω-limit is the equilibrium point O, and if the trajectories are belowW s(M, 0), then their ω-limit is the point Q1.

(b) If E = 1, then the singularityQe collapseswithQ1, and detDYη(1, 0) = 0. Applying the CenterManifold theorem [14]we
can show that Q1 is a non-hyperbolic local attractor. Moreover, QM is a saddle point and O is a local attractor (locally
asymptotically stable), and the behavior of the trajectories is similar to case (a).

(c) If E < M , then ve < 0, the equilibrium point Qe is in the fourth quadrant, QM is a repeller since detDYη(M, 0) > 0
and trD Yη(M, 0) > 0, whereas Q1 is a saddle point because detDYη(1, 0) < 0 and O is a global attractor (globally
asymptotically stable).

(d) If E = M , then Qe collapses with QM , and detD Yη(M, 0) = 0. Applying the Center Manifold theorem we can show that
QM is a non-hyperbolic local repeller. Moreover, Q1 is still a saddle point and (0, 0) is a global attractor. �

In the following, we suppose that 0 < M < E < 1, and the existence of a unique equilibrium point Qe in the interior of
the first quadrant is guaranteed, more precisely in the subregion

Γ̄ = {(u, v) ∈ Γ /0 < M < u < 1, v ≥ 0}.

Moreover, O is a local attractor, the singularities Q1 and QM are saddle points andW s(M, 0) andW u(1, 0) are the stable and
unstable manifolds [14] of QM and Q1, respectively.

Proof of Lemma 3. LetW s(M, 0),W u(1, 0) be the stable and unstable manifolds of QM and Q1, respectively. It is then clear
the α-limit of W s(M, 0) and ω-limit of W u(1, 0) are not at infinity on the direction of v-axis, nor the ω-limit of W u(1, 0)
is over the u-axis; then, there are points (u∗, vs) ∈ W s(M, 0) and (u∗, vu) ∈ W u(1, 0), with vs and vu, depending on the
parameter value, such that vs = s(A, E, S,M) and vu = u(A, E, S,M).

It can be that if 0 < M < u∗
≪ 1, then vs < vu and if M ≪ u∗ < 1, then vs > vu. Since the vector field Yη is continuous

with respect to the parameters values, then the stable manifoldW s(M, 0) intersects the unstable manifoldW u(1, 0).
Hence, there exists (u∗, v∗) ∈ Γ̄ such that v∗s

= v∗u and the equation

s(A, E, S,M) = u(A, E, S,M)

defines a surface in the parameters space, for which the heteroclinic curve exists. �

If vs > vu, an invariant subregionΛ, determined by stable manifold W s(M, 0), the straight u = 1 and the u-axis, exists.
As the nature of the equilibrium point Qe depends only on trD Yν(E, ve), because detD Yν(E, ve) is always positive; then, the
point Qe can be an attractor or a repeller surrounded by at least one limit cycle (Poincaré–Bendixson theorem), or else it is
a weak focus [14] in the subregionΛ.

Γ̆ = {(u, v) ∈ Γ /M < u < 1, 0 < v ≤ vs}.

The conditions for the nature of the point Qe are established in the proof of Theorem 4.
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Proof of Theorem 4. In the point Qe, the Jacobian matrix is

D Yη(E, ve) =


E(−3E2

− 2EA + 2EM + 2E + AM + A − M) −E
S(1 − E)(E − M)(A + E) 0


.

Hence

detD Yν(E, ve) = SE(1 − E)(E − M)(A + E) > 0

and

trD Yν(E, ve) = E(−3E2
− 2EA + 2EM + 2E + AM + A − M),

the behavior of (E, ve) is determined by

T = (−2E + M + 1)A − 3E2
+ 2EM + 2E − M.

We have that:

(a) trD Yη(E, ve) < 0, if and only if, A > −3E2+2EM+2E−M
2E−M−1 (T < 0) and the singularity Qe is a local attractor.

(b) trD Yη(E, ve) > 0, if and only if, A > −3E2+2EM+2E−M
2E−M−1 and Qe is a repeller and by the Poincaré–Bendixson theorem at

least one limit cycle surrounding the point (E, ve) exists; the trajectories under the separatrix determined byW s(M, 0)
tend to this limit cycle.

When vs = vu, the limit cycle collapses with the heteroclinic that joins both saddle points.
(c) trD Yη(E, ve) = 0 if and only if A =

−3E2+2EM+2E−M
2E−M−1 < 1.

To determine the weakness of Qe we employ the translation to origin given by

u → U + E and v → V + ve, with ve =
(1 − E)2(E − M)2

2E − M − 1
,

obtaining the system

Zη :


dU
dτ

= ((1 − U − E)(U + E − M)(A + U + E)− (V + ve))(U + E)

dV
dτ

= S U(V + ve).

The Jordan form associated to D Zη(0, 0) is

J =


α −H
H α


with α = trD Zη(0, 0) = 0 and H = detDZη(0, 0)where

H2
= SE

(1 − E)2(E − M)2

2E − M − 1

and the matrix for the change of variables [39] is

N =


Z11 − α −H

Z21 0


=

 0 −H
H2

E
0


.

Then the vector field Zη becomes

Z̄η :


dx
dτ

= −Hy − HSxy

dy
dτ

= Hx −
H2

E
xy + H(2)

E
2E − M − 1

y2 − H2 1 − 4E + 5E2
− 4EM + M2

+ M
2E − M − 1

y3 + H3y4.

Making a time rescaling given by T = Hτ , we have the canonical system

Z̆η :


dx
dT

= −y − Sxy

dy
dT

= x −
H
E
xy + (2)

E
2E − M − 1

y2 − H
1 − 4E + 5E2

− 4EM + M2
+ M

2E − M − 1
y3 + H2y4.
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Using the Mathematica software [41] to calculate the focal values for the vector field Z̆η , the second Lyapunov
quantity [14] is given by

L2 = −
(3)H
8(3)

= −
H

8(3)
f (M, E),

where L2 < 0, since

f (M, E) = 2 − 9E + 12E2
+ 2M − 9EM + 2M2 > 0

for all E such as

1 + M
2

< E <
1
3
(M + 1 +


M2 − M + 1).

Thus, Qe is a weak focus of order one and system (3) has a unique limit cycle. �

Proof of Theorem 5. If vs < vu, then the stable manifoldW s(M, 0) is below the unstable manifoldW u(1, 0), and 0 < M <
E ≪ 1. Due to uniqueness of solutions, the trajectories withdrawing from the point Qe cannot intersectW u(M, 0) and they
must have as ω-limit the point O, since QM and Q1 are saddle points.

On the other hand, the limit cycle that appears by Hopf bifurcations increases until intersects the heteroclinic curve
joining the points QM and Q1, and disappearing when this curve is broken.

Then, there exists a subset on the parameters space for which the point O is globally asymptotically stable.
Moreover, there exists a trajectory originated on Qe and ending on O, forming a new heteroclinic curve. �

Proof of Theorem 6. WhenM = 0, we have the weak Allee effect

(1) In this case the Jacobian matrix in O is

D Yη(0, 0) =


0 0
0 −SE


.

Applying the Central Manifold Theorem we obtain the behavior of a saddle-node. There is a separatrix curve
originated for the collapse of the points O and QM of system (3), dividing the behavior of the trajectories which have
differentω-limit . Then, for all parameter values, O is a local attractor for all the trajectories with initial conditions above
the separatrix curve.

(2) As the Jacobian matrix in Q1 is

D Yη(1, 0) =


−(1 + A) −1

0 S(1 − E)


,

the equilibrium point Q1 will have the same characteristics of the strong Allee effect depending on the sign of 1 − E. �

Proof of Theorem 7. In the point Qe, the Jacobian matrix is

D Yη(E, ve) =


−4E3

+ 3E2(1 − A)+ 2AE − ve −E
Sve 0


with ve =

(1−E)2E2

2E−1 . As ve > 0, then detD Yη(E, ve) > 0 and the nature of Qe depends on

trD Yη(E, ve) = −A(2E − 1)+ E(2 − 3E).

Qe has the same nature as the equivalent point in system (3) that is.
If A > 2E−3E2

2E−1 , the singularity Qe is an attractor.

If A < 2E−3E2
2E−1 , the singularityQe is a repeller surrounded by a limit cycle (Theoremof Poincaré–Bendixson), when vs > vu.

If A =
2E−3E2
2E−1 , the singularity Qe is a weak focus.

Using the Mathematica software [41] we obtain that the second Lyapunov quantity [14] is L2 = −
(3)H
8(3) , with H2

=

SE (1−E)2E2

2E−1 , which is clearly negative for E > 1
2 . For system (3), the uniqueness of limit cycle, when it exists, is assured.

This limit cycle increased when the parameters changed until to intersect the heteroclinic joining Q1 and O.
7.2. When E → 0, the point Qe is a repeller node. The heteroclinic that joined the saddle points Q1 and O is broken (also

disappearing the limit cycle); then, the origin Owill be globally asymptotically stable. �
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